Microsoft

Microsoft SQL Server 2008 . ® ®
T-S0L gﬂ(;ggo_ls_?;‘g LSQL Server
Fundamentals

Fundamentals

[tzik Ben-Gan

Itzik Ben-Gan
(Solid Quality Mentors)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12806.aspx

Microsoft
9780735626010 Press

© 2009 Itzik Ben-Gan. All rights reserved.

Table of Contents

Acknowledgments.ttt e e xiii
Introduction i e XV
1 Background to T-SQL Querying and Programming............ 1
Theoretical Background 1

1 O 2

SEt ThEOTY . .\t 3

Predicate LOGIC.o 4

The Relational Model 5
TheDataLife Cycle ... 10

SQL Server Architecture 12
SQLServerInstances.o e 13

Databases 14

Schemas and Objects 17

Creating Tables and Defining Data Integrity............................. 18
Creating Tables. 19

Defining Data Integrity. ... 20
CONCIUSION. .« .o 24

2 Single-Table Queries. ...ttt 25
Elements of the SELECT Statement........... i .. 25

The FROM Clause.o e 27

The WHERE Clause. e 29

The GROUP BY Clause.t 30

The HAVING Clause. e 34

The SELECT Clause.ottt e e 35

The ORDERBY Clause e 40

The TOP Option . .. 42

The OVER Clause e 45

Predicates and Operators.ttt 51

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

CASE EXPIrESSIONS .« o vttt ettt e et e e e e e 54
NULLS . ot 58
All-At-Once Operations. 62
Working with Character Data. 63
Data Types.o 64
Collation ... 65
Operators and Functions i, 66

The LIKE Predicate. e 73
Working with Dateand Time Data 75
Date and Time Data Typeso oo 75
Literals 76
Working with Date and Time Separately........................... 80
Filtering Date Rangeso 81

Date and Time Functionso 82
Querying Metadata. 89
Catalog VIeWsS. 89
Information Schema Views. i i 90
System Stored Procedures and Functions 90
CoNCIUSION . . .o 92
EXOICISES. o oottt 92
SOIULIONS . .o 96
3 JOINS i e e e e 101
CrOSS JOINS .« ot 102
ANSI SQL-92 SYNTaX. . .. vv vt et 102
ANSISQL-89 SYNtax.vvv ettt 103

Self Cross JOINSttt 103
Producing Tables of Numbers............. 104

INNEr JOINS . o oo 106
ANSI SQL-92 SYNtaX. . ..o vttt e 106
ANSISQL-89 SYNtax.vvv ettt 107
InnerJoin Safety. 108
Further Join Examples. 109
ComMPOSItE JOINS . . .ot 109
Non-EquiJoins. 110
Multi-Table Joinso 112
OULEr JOINS o 113
Fundamentals of Outer Joins. o L. 113

Beyond the Fundamentals of Outer Joins......................... 116

Table of Contents ix

CONCIUSION. .« .ot 123
EXEICISES. o oo 123
SOIULIONS . e 129
4 SubqUENIES.t e e 133
Self-Contained Subqueries. 134
Self-Contained Scalar Subquery Examples 134
Self-Contained Multi-Valued Subquery
EXamples 136
Correlated Subqueries. 140
The EXISTS Predicate. e 142
Beyond the Fundamentals of Subqueries 144
Returning Previous or Next Values. 144
Running Aggregates 145
Misbehaving Subqueries. 146
CONCIUSION. .« .o 151
EXercises. 152
SOIULIONS . e 156
5 Table Expressionsoiuiiiiiiiiniiiiiiin... 161
Derived Tables 161
Assigning Column Ali@ases.t 163
UsSiNg Argumentsottt 165
NESTING .« .o 165
Multiple References. 166
Common Table EXpressions 167
Assigning Column AlI@ses.t 168
USiNg Argumentsottt 168
Defining Multiple CTESo 169
Multiple References. 169
Recursive CTES o e 170
VWS L 172
Views and the ORDERBY Clause. i, 174
View OptioNs ... 176
Inline Table-Valued Functions 179
The APPLY OPeratorttt e 181
CONCIUSION. .« .o 184
EXEICISES oo 184

SOIULIONS . 189

X Table of Contents

6 SetOperations.............ccoiiiiiiiiiiiiiniinnnnnnnn. 193
The UNION Set Operation i 194
The UNION ALL Set Operation 195

The UNION DISTINCT Set Operation. ..., 195

The INTERSECT Set Operationooiiiiiiiiiiiieaeeann. 196
The INTERSECT DISTINCT Set Operation. ..., 197

The INTERSECT ALL Set Operation, 198

The EXCEPT Set Operationt 200
The EXCEPT DISTINCT Set Operation., 201

The EXCEPT ALL Set Operation.......... ..., 202
Precedenceo 203
Circumventing Unsupported Logical Phases............................ 204
CONCIUSION. .« .o 206
EXEICISES. .« o e 206
SOIULIONS . .o 210
7 Pivot, Unpivot, and Grouping Sets. 213
Pivoting Data 213
Pivoting with Standard SQL i i i i 216
Pivoting with the Native T-SQL PIVOT Operator 217
Unpivoting Data. 219
Unpivoting with Standard SQL oo i i i 220
Unpivoting with the Native T-SQL UNPIVOT Operator.............. 223
GroUPING SetS. ..t 224
The GROUPING SETS Subclause, 225

The CUBE Subclause 226

The ROLLUP Subclause s 227

The GROUPING and GROUPING_ID Functions. 228
CoNCIUSION. . .o 231
EXEICISES. « oo 231
SOIULIONS . .o 234
8 Data Modification............. i, 237
Inserting Data. 237
The INSERT VALUES Statemento, 238

The INSERT SELECT Statement. 239

The INSERT EXEC Statement i, 240

The SELECT INTO Statement 241

The BULK INSERT Statement ..o, 242

The IDENTITY Property. ... 243

Table of Contents xi

Deleting Datao 247
The DELETE Statement e 247

The TRUNCATE Statementt 248
DELETE Based 0n@aJoin ...t 249
Updating Datat 250
The UPDATE Statement.t 250
UPDATE Based ona Join. 252
Assignment UPDATE e 254
Merging Data 255
Modifying Data Through Table Expressionscoovu... 259
Modifications with the TOP Option, 262
The OUTPUT Clause.ottt ettt 263
INSERT with OUTPUT. e 264
DELETE with OUTPUT ... e 266
UPDATE with OUTPUT. ... 266
MERGE with OUTPUT e 267
Composable DML 268
CONCIUSION. .. et 270
EXErCISES. o oo 270
SOIULIONS .. 274
9 Transactions and CoNcurrencycoveieunennenns 279
Transactions. 279
Locksand Blocking 282
LOCKS o 282
Troubleshooting Blocking. i 285
[solation Levels 292
The READ UNCOMMITTED Isolation Level 293

The READ COMMITTED Isolation Level 294

The REPEATABLE READ Isolation Level............................ 295

The SERIALIZABLE Isolation Level 297
Snapshot Isolation Levels 299
Summary of Isolation Levels o i 305
Deadlocks 306
CONCIUSION. .« .. 309
EXErCiSeS. . oot 309
10 ProgrammableObjects il 319
Variables. 319

Batches. 322

xii Table of Contents

ABatchasaUnitof Parsing................ i, 322
Batches and Variables 323
Statements That Cannot Be Combined in the Same Batch........... 324

A Batch as a Unit of Resolution.......... i 324

The GO N OPtioN . ..o 325

Flow Elements.o o 325
The IF ... ELSE Flow Element, 325

The WHILE Flow Element 327

An Example of Using IFand WHILE 329
CUISOS . et e 329
Temporary Tables. 333
Local Temporary Tables 334
Global Temporary Tables 335
Table Variables 336
Table Types . ..o 337
Dynamic SQL. . .. o 338
The EXEC Commando 339

The sp_executesql Stored Procedure 341
Using PIVOT with Dynamic SQL i, 343
ROULINES . . .o 344
User-Defined Functions, 345
Stored Procedurest 346
Lo o =T 349

Error Handlingo 353
CONCIUSION. .« .o 357
Appendix A: Getting Started 359
INdEX oo e e 379

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 5
Table Expressions

Derived Tablesoo it i i i i e et i e 161
Common Table EXpressions.ouiiiiniiniin i, 167
VWS . L ittt i e e e e e e e 172
Inline Table-Valued Functions. i it 179
The APPLY Operatorttt ettt 181
CoNClUSION ..o e e e e e 184
(T ol 1= 3PP 184
SOIULIONS . .o e e e e 189

Table expressions are named query expressions that represent a valid relational table. You can
use them in data manipulation statements similar to other tables. Microsoft SQL Server
supports four types of table expressions: derived tables, common table expressions (CTEs),
views, and inline table-valued functions (inline TVFs), each of which | will describe in detail in
this chapter. The focus of this chapter is SELECT queries against table expressions; Chapter 8,
“Data Modification,” covers modifications against table expressions.

Table expressions are not physically materialized anywhere—they are virtual. A query against a
table expression is internally translated to a query against the underlying objects. The benefits
of using table expressions are typically related to logical aspects of your code and not to
performance. For example, table expressions help you simplify your solutions by using a modular
approach. Table expressions also help you circumvent certain restrictions in the language, such
as the inability to refer to column aliases assigned in the SELECT clause in query clauses that are
logically processed prior to the SELECT clause.

This chapter also introduces the APPLY table operator used in conjunction with a table expression.
I will explain how to use this operator to apply a table expression to each row of another table.

Derived Tables

Derived tables (also known as table subqueries) are defined in the FROM clause of an outer
query. Their scope of existence is the outer query. As soon as the outer query is finished, the
derived table is gone.

161

162

Microsoft SQL Server 2008 T-SQL Fundamentals

You specify the query defining the derived table within parentheses, followed by the AS
clause and the derived table name. For example, the following code defines a derived table
called USACusts based on a query that returns all customers from the United States, and the
outer query selects all rows from the derived table:

USE TSQLFundamentals2008;

SELECT *
FROM (SELECT custid, companyname
FROM Sales.Customers
WHERE country = N'USA') AS USACusts;

In this particular case, which is a simple example of the basic syntax, a derived table is not
needed because the outer query doesn't apply any manipulation.

The code in this basic example returns the following output:

custid companyname

32 Customer YSIQX
36 Customer LVISO
43 Customer UISOJ]
45 Customer QXPPT
48 Customer DVFMB
55 Customer KzZQZT
65 Customer NYUHS
71 Customer LCOUJ
75 Customer X0JYP
77 Customer LCYBZ
78 Customer NLTYP
82 Customer EYHKM
89 Customer YBQTI

A query must meet three requirements to be valid to define a table expression of any kind:

1. Orderis not guaranteed. A table expression is supposed to represent a relational
table, and the rows in a relational table have no guaranteed order. Recall that this
aspect of a relation stems from set theory. For this reason, ANSI SQL disallows an
ORDER BY clause in queries that are used to define table expressions. T-SQL follows
this restriction for the most part, with one exception—when TOP is also specified.

In the context of a query with the TOP option, the ORDER BY clause serves a logical
purpose: defining for the TOP option which rows to filter. If you use a query with TOP
and ORDER BY to define a table expression, ORDER BY is only guaranteed to serve the
logical filtering purpose for the TOP option and not the usual presentation purpose. If
the outer query against the table expression does not have a presentation ORDER BY,
the output is not guaranteed to be returned in any particular order. The section “Views
and the ORDER BY Clause,” later in this chapter, provides more detail on this item.

2. All columns must have names. All columns in a table must have names; therefore,
you must assign column aliases to all expressions in the SELECT list of the query that is
used to define a table expression.

Chapter 5 Table Expressions 163

3. All column names must be unique. All column names in a table must be unique;
therefore, a table expression that has multiple columns with the same name is invalid.
This might happen when the query defining the table expression joins two tables, and
both tables have a column with the same name. If you need to incorporate both columns
in your table expression, they must have different column names. You can resolve this by
assigning the two columns with different column aliases.

Assigning Column Aliases

One of the benefits of using table expressions is that in any clause of the outer query you can
refer to column aliases that were assigned in the SELECT clause of the inner query. This helps
you get around the fact that you can’t refer to column aliases assigned in the SELECT clause
in query clauses that are logically processed prior to the SELECT clause (for example, WHERE
or GROUP BY).

For example, suppose that you need to write a query against the Sales.Orders table and
return the number of distinct customers handled in each order year. The following attempt is
invalid because the GROUP BY clause refers to a column alias that was assigned in the SELECT
clause, and the GROUP BY clause is logically processed prior to the SELECT clause:

SELECT
YEAR(orderdate) AS orderyear,
COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY orderyear;

You could solve the problem by referring to the expression YEAR(orderdate) in both

the GROUP BY and the SELECT clauses, but this is an example with a short expression.
What if the expression were much longer? Maintaining two copies of the same expression
might hurt code readability and maintainability and is more prone to errors. To solve

the problem in a way that requires only one copy of the expression, you can use a table
expression like so:

LISTING 5-1 Query with a Derived Table Using Inline Aliasing Form

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate) AS orderyear, custid
FROM Sales.Orders) AS D

GROUP BY orderyear;

This query returns the following output:

orderyear numcusts
2006 67
2007 86
2008 81

164

Microsoft SQL Server 2008 T-SQL Fundamentals

This code defines a derived table called D based on a query against the Orders table that
returns the order year and customer ID from all rows. The SELECT list of the inner query
uses inline aliasing format to assign the alias orderyear to the expression YEAR(orderdate).
The outer query can refer to the orderyear column alias in both the GROUP BY and SELECT
clauses, because as far as the outer query is concerned, it queries a table called D with
columns called orderyear and custid.

As | mentioned earlier, SQL Server expands the definition of the table expression and accesses
the underlying objects directly. After expansion, the query in Listing 5-1 looks like this:

SELECT YEAR(orderdate) AS orderyear, COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY YEAR(orderdate);

This is just to emphasize that you use table expressions for logical (not performance-related)
reasons. Generally speaking, table expressions have neither positive nor negative performance
impact.

The code in Listing 5-1 uses the inline aliasing format to assign column aliases to expressions.
The syntax for inline aliasing is <expression> [AS] <alias>. Note that the word AS is optional
in the syntax for inline aliasing; however, | find that it helps the readability of the code and
recommend using it.

In some cases, you might prefer to use a second supported form for assigning column
aliases, which you can think of as an external form. With this form you do not assign column
aliases following the expressions in the SELECT list—you specify all target column names in
parentheses following the table expression’s name like so:

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM (SELECT YEAR(orderdate), custid

FROM Sales.Orders) AS D(orderyear, custid)
GROUP BY orderyear;

It is generally recommended that you use the inline form for a couple of reasons. If you need
to debug the code when using the inline form, when you highlight the query defining the
table expression and run it, the columns in the result appear with the aliases you assigned.
With the external form, you cannot include the target column names when you highlight
the table expression query, so the result appears with no column names in the case of the
unnamed expressions. Also, when the table expression query is lengthy, using the external
form it can be quite difficult to figure out which column alias belongs to which expression.

Even though it's a best practice to use the inline aliasing form, in some cases you may find
the external form more convenient to work with. For example, when the query defining the
table expression isn't going to undergo any further revisions and you want to treat it like a
"black box"—you want to focus your attention on the table expression name followed by the
target column list when you look at the outer query.

Chapter 5 Table Expressions 165

Using Arguments

In the query defining a derived table, you can refer to arguments. The arguments can be local
variables and input parameters to a routine such as a stored procedure or function. For example,
the following code declares and initializes a local variable called @empid, and the query in the
code that is used to define the derived table D refers to the local variable in the WHERE clause:

DECLARE @empid AS INT = 3;

/:‘:

-- Prior to SQL Server 2008 use separate DECLARE and SET statements:
DECLARE @empid AS INT;

SET @empid = 3;

*/

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM (SELECT YEAR(orderdate) AS orderyear, custid
FROM Sales.Orders
WHERE empid = @empid) AS D
GROUP BY orderyear;

This query returns the number of distinct customers per year that handled the orders of the
input employee (the employee whose ID is stored in the variable @empid). Here's the output
of this query:

orderyear numcusts

2006 16
2007 46
2008 30
Nesting

If you need to define a derived table using a query that by itself refers to a derived table, you
end up nesting derived tables. Nesting of derived tables is a result of the fact that a derived table
is defined in the FROM clause of the outer query and not separately. Nesting is a problematic
aspect of programming in general as it tends to complicate the code and reduce its readability.

For example, the code in Listing 5-2 returns order years and the number of customers handled
in each year only for years in which more than 70 customers were handled:

LISTING 5-2 Query with Nested Derived Tables

SELECT orderyear, numcusts
FROM (SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM (SELECT YEAR(orderdate) AS orderyear, custid
FROM Sales.Orders) AS D1
GROUP BY orderyear) AS D2
WHERE numcusts > 70;

166

Microsoft SQL Server 2008 T-SQL Fundamentals

This code returns the following output:

orderyear numcusts

2007 86
2008 81

The purpose of the innermost derived table, D1, is to assign the column alias orderyear to the
expression YEAR(orderdate). The query against D1 refers to orderyear in both the GROUP BY
and SELECT clauses, and assigns the column alias numcusts to the expression COUNT(DISTINCT
custid). The query against D1 is used to define the derived table D2. The query against D2
refers to numcusts in the WHERE clause to filter order years in which more than 70 customers
were handled.

The whole purpose of using table expressions in this example was to simplify the solution by
reusing column aliases instead of repeating expressions. However, with the complexity added by
the nesting aspect of derived tables, I'm not sure that the solution is simpler than the alternative,
which does not make any use of derived tables but instead repeats expressions:

SELECT YEAR(orderdate) AS orderyear, COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders

GROUP BY YEAR(orderdate)

HAVING COUNT(DISTINCT custid) > 70;

In short, nesting is a problematic aspect of derived tables.

Multiple References

Another problematic aspect of derived tables stems from the fact that derived tables are defined
in the FROM clause of the outer query and not prior to the outer query. As far as the FROM
clause of the outer query is concerned, the derived table doesn't exist yet; therefore, if you need
to refer to multiple instances of the derived table, you can't. Instead, you have to define multiple
derived tables based on the same query. The query in Listing 5-3 provides an example:

LISTING 5-3 Multiple Derived Tables Based on the Same Query

SELECT Cur.orderyear,

Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,
Cur.numcusts - Prv.numcusts AS growth
FROM (SELECT YEAR(orderdate) AS orderyear,

COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY YEAR(orderdate)) AS Cur
LEFT OUTER JOIN
(SELECT YEAR(orderdate) AS orderyear,
COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY YEAR(orderdate)) AS Prv
ON Cur.orderyear = Prv.orderyear + 1;

Chapter 5 Table Expressions 167

This query joins two instances of a table expression to create two derived tables: the first
derived table, Cur, represents current years, and the second derived table, Prv, represents
previous years. The join condition Cur.orderyear = Prv.orderyear + 1 ensures that each row
from the first derived table matches with the previous year of the second. By making it a
LEFT outer join, the first year that has no previous year is also returned from the Cur table.
The SELECT clause of the outer query calculates the difference between the number of
customers handled in the current and previous years.

The code in Listing 5-3 produces the following output:

orderyear curnumcusts prvnumcusts growth

2006 67 NULL NULL
2007 86 67 19
2008 81 86 -5

The fact that you cannot refer to multiple instances of the same derived table forces you to
maintain multiple copies of the same query definition. This leads to lengthy code that is hard
to maintain and is prone to errors.

Common Table Expressions

Common table expressions (CTEs) are another form of table expression very similar to derived
tables, yet with a couple of important advantages. CTEs were introduced in SQL Server 2005
and are part of ANSI SQL:1999 and later standards.

CTEs are defined using a WITH statement and have the following general form:

WITH <CTE_Name>[(<target_column_list>)]
AS
(

<inner_query_defining_CTE>

)

<outer_query_against_CTE>;

The inner query defining the CTE must follow all requirements mentioned earlier to be valid
to define a table expression. As a simple example, the following code defines a CTE called
USACusts based on a query that returns all customers from the United States, and the outer
query selects all rows from the CTE:

WITH USACusts AS

(
SELECT custid, companyname
FROM Sales.Customers
WHERE country = N'USA'

)

SELECT * FROM USACusts;

As with derived tables, as soon as the outer query finishes, the CTE gets out of scope.

168

Microsoft SQL Server 2008 T-SQL Fundamentals

Note The WITH clause is used in T-SQL for several different purposes. To avoid ambiguity, when
the WITH clause is used to define a CTE, the preceding statement in the same batch—if one
exists—must be terminated with a semicolon. And oddly enough, the semicolon for the entire
CTE is not required, though I still recommend specifying it.

Assigning Column Aliases

CTEs also support two forms of column aliasing—inline and external. For the inline form,
specify <expression> AS <column_alias>; for the external form, specify the target column list
in parentheses immediately after the CTE name.

Here's an example of the inline form:

WITH C AS
(
SELECT YEAR(orderdate) AS orderyear, custid
FROM Sales.Orders
)
SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM C
GROUP BY orderyear;

And here’s an example of the external form:

WITH C(orderyear, custid) AS
(
SELECT YEAR(orderdate), custid
FROM Sales.Orders
)
SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM C
GROUP BY orderyear;

The motivations for using one form or the other are similar to those described in the context
of derived tables.

Using Arguments

As with derived tables, you can also use arguments in the query used to define a CTE. Here's
an example:

DECLARE @empid AS INT = 3;

/:‘:

-- Prior to SQL Server 2008 use separate DECLARE and SET statements:
DECLARE @empid AS INT;

SET @empid = 3;

*/

Chapter 5 Table Expressions 169

WITH C AS
(
SELECT YEAR(orderdate) AS orderyear, custid
FROM Sales.Orders
WHERE empid = @empid
)
SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM C
GROUP BY orderyear;

Defining Multiple CTEs

On the surface, the difference between derived tables and CTEs might seem to be merely
semantic. However, the fact that you first define a CTE and then use it gives it several important
advantages over derived tables. One of those advantages is that if you need to refer to one
CTE from another, you don't end up nesting them like derived tables. Instead, you simply
define multiple CTEs separated by commas under the same WITH statement. Each CTE can
refer to all previously defined CTEs, and the outer query can refer to all CTEs. For example, the
following code is the CTE alternative to the nested derived tables approach in Listing 5-2:

WITH C1 AS

(
SELECT YEAR(orderdate) AS orderyear, custid
FROM Sales.Orders

),
C2 AS

(
SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM C1
GROUP BY orderyear

D)

SELECT orderyear, numcusts

FROM C2

WHERE numcusts > 70;

Because you define a CTE before you use it, you don’t end up nesting CTEs. Each CTE
appears separately in the code in a modular manner. This modular approach substantially
improves the readability and maintainability of the code compared to the nested derived
table approach.

Technically you cannot nest CTEs, nor can you define a CTE within the parentheses of a derived
table. However, nesting is a problematic practice; therefore, think of these restrictions as aids
to code clarity rather than obstacles.

Multiple References

The fact that a CTE is defined first and then queried has another advantage: As far as
the FROM clause of the outer query is concerned, the CTE already exists; therefore, you

170

Microsoft SQL Server 2008 T-SQL Fundamentals

can refer to multiple instances of the same CTE. For example, the following code is the
logical equivalent of the code shown earlier in Listing 5-3, using CTEs instead of derived
tables:

WITH YearlyCount AS
(
SELECT YEAR(orderdate) AS orderyear,
COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY YEAR(orderdate)
)
SELECT Cur.orderyear,
Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,
Cur.numcusts - Prv.numcusts AS growth
FROM YearlyCount AS Cur
LEFT OUTER JOIN YearlyCount AS Prv
ON Cur.orderyear = Prv.orderyear + 1;

As you can see, the CTE YearlyCount is defined once and accessed twice in the FROM clause
of the outer query—once as Cur and once as Prv. You need to maintain only one copy of the
CTE query and not multiple copies as you would with derived tables.

If you're curious about performance, recall that earlier | mentioned that typically table
expressions have no performance impact because they are not physically materialized
anywhere. Both references to the CTE here are going to be expanded. Internally, this query
has a self join between two instances of the Orders table, each of which involves scanning
the table data and aggregating it before the join—the same physical processing that takes
place with the derived table approach.

Recursive CTEs
This section is optional because it covers subjects that are beyond the fundamentals.

CTEs are unique among table expressions because they have recursive capabilities. A recursive
CTE is defined by at least two queries (more are possible)—at least one query known as the
anchor member and at least one query known as the recursive member. The general form of a
basic recursive CTE looks like this:

WITH <CTE_Name>[(<target_column_Tlist>)]
AS
(

<anchor_member>
UNION ALL
<recursive_member>

)

<outer_query_against_CTE>;

The anchor member is a query that returns a valid relational result table—Ilike a query that
is used to define a nonrecursive table expression. The anchor member query is invoked
only once.

Chapter 5 Table Expressions 171

The recursive member is a query that has a reference to the CTE name. The reference to the CTE
name represents what is logically the previous result set in a sequence of executions. The first
time that the recursive member is invoked, the previous result set represents whatever the anchor
member returned. In each subsequent invocation of the recursive member, the reference to the
CTE name represents the result set returned by the previous invocation of the recursive member.
The recursive member has no explicit recursion termination check—the termination check is
implicit. The recursive member is invoked repeatedly until it returns an empty set, or exceeds
some limit.

Both queries must be compatible in terms of the number of columns they return and the
data types of the corresponding columns.

The reference to the CTE name in the outer query represents the unified result sets of the
invocation of the anchor member and all invocations of the recursive member.

If this is your first encounter with recursive CTEs, you might find this explanation hard to
understand. They are best explained with an example. The following code demonstrates
how to use a recursive CTE to return information about an employee (Don Funk, employee
ID 2) and all of the employee’s subordinates in all levels (direct or indirect):

WITH EmpsCTE AS

(
SELECT empid, mgrid, firstname, lastname
FROM HR.Employees
WHERE empid = 2

UNION ALL

SELECT C.empid, C.mgrid, C.firstname, C.lastname
FROM EmpsCTE AS P
JOIN HR.Employees AS C
ON C.mgrid = P.empid
)
SELECT empid, mgrid, firstname, lastname
FROM EmpsCTE;

The anchor member queries the HR.Employees table and simply returns the row for employee 2:

SELECT empid, mgrid, firstname, lastname
FROM HR.Employees
WHERE empid = 2

The recursive member joins the CTE—representing the previous result set—with the Employees
table to return the direct subordinates of the employees returned in the previous result set:

SELECT C.empid, C.mgrid, C.firstname, C.Tlastname
FROM EmpsCTE AS P
JOIN HR.Employees AS C
ON C.mgrid = P.empid

172 Microsoft SQL Server 2008 T-SQL Fundamentals

In other words, the recursive member is invoked repeatedly, and in each invocation it returns
the next level of subordinates. The first time the recursive member is invoked it returns

the direct subordinates of employee 2—employees 3 and 5. The second time the recursive
member is invoked, it returns the direct subordinates of employees 3 and 5—employees 4, 6,
7,8, and 9. The third time the recursive member is invoked, there are no more subordinates;
the recursive member returns an empty set and therefore recursion stops.

The reference to the CTE name in the outer query represents the unified result sets; in other
words, employee 2 and all of the employee’s subordinates.

Here's the output of this code:

empid mgrid firstname Tastname

2 1 Don Funk

3 2 Judy Lew

5 2 Sven Buck

6 5 Paul Suurs

7 5 Russell King

9 5 Zoya Dolgopyatova
4 3 Yael Peled

8 3 Maria Cameron

In the event of a logical error in the join predicate in the recursive member, or problems

with the data resulting in cycles, the recursive member can potentially be invoked an infinite
number of times. As a safety measure, by default SQL Server restricts the number of times
that the recursive member can be invoked to 100. The code will fail upon the 101st invocation
of the recursive member. You can change the default maximum recursion limit by specifying
the hint OPTION(MAXRECURSION n) at the end of the outer query, where n is an integer in
the range 0 through 32,767 representing the maximum recursion limit you want to set. If you
want to remove the restriction altogether, specify MAXRECURSION 0. Note that SQL Server
stores the intermediate result sets returned by the anchor and recursive members in a work
table in tempdb; if you remove the restriction and have a runaway query, the work table will
quickly get very large. If tempdb can't grow anymore—for example, when you run out of disk
space—the query will fail.

Views

The two types of table expressions discussed so far—derived tables and CTEs—have a very limited
scope, which is the single statement scope. As soon as the outer query against those table expressions
is finished, they are gone. This means that derived tables and CTEs are not reusable.

Views and inline table-valued functions (inline TVFs) are two reusable types of table expressions;
their definition is stored as a database object. Once created, those objects are permanent parts
of the database and are only removed from the database if explicitly dropped.

Chapter 5 Table Expressions 173

In most other respects, views and inline TVFs are treated like derived tables and CTEs.
For example, when querying a view or an inline TVF, SQL Server expands the definition
of the table expression and queries the underlying objects directly, as with derived tables
and CTEs.

In this section, I'll describe views; in the next section, I'll describe inline TVFs. As | mentioned
earlier, a view is a reusable table expression whose definition is stored in the database.

For example, the following code creates a view called USACusts in the Sales schema in the
TSQLFundamentals2008 database, representing all customers from the United States:

USE TSQLFundamentals2008;

IF OBJECT_ID('Sales.USACusts') IS NOT NULL
DROP VIEW Sales.USACusts;

GO

CREATE VIEW Sales.USACusts

AS

SELECT
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

GO

Note that just as with derived tables and CTEs, instead of using inline column aliasing as
shown in the preceding code, you can use external column aliasing by specifying the target
column names in parentheses immediately after the view name.

Once you create this view, you can query it much like you query other tables in the database:

SELECT custid, companyname
FROM Sales.USACusts;

Because a view is an object in the database, you can control access to the view with permissions
just like other objects that can be queried (for example, SELECT, INSERT, UPDATE, and DELETE
permissions). For example, you can deny direct access to the underlying objects while granting
access to the view.

Note that the general recommendation to avoid using SELECT * has specific relevance in the
context of views. The columns are enumerated in the compiled form of the view and new table
columns will not be automatically added to the view. For example, suppose you define a view
based on the query SELECT * FROM dbo.T1, and at the view creation time the table T1 has the
columns coll and col2. SQL Server stores information only on those two columns in the view's
metadata. If you alter the definition of the table adding new columns, those new columns will
not be added to the view. You can refresh the view's metadata using a stored procedure called
sp_refreshview, but to avoid confusion, the best practice is to explicitly list the column names that
you need in the definition of the view. If columns are added to the underlying tables and you
need them in the view, use the ALTER VIEW statement to revise the view definition accordingly.

174

Microsoft SQL Server 2008 T-SQL Fundamentals

Views and the ORDER BY Clause

The query that you use to define a view must meet all requirements mentioned earlier with
respect to table expressions in the context of derived tables. The view should not guarantee
any order to the rows, all view columns must have names, and all column names must be
unique. In this section, I'll elaborate a bit about the ordering issue, which is a fundamental
point that is crucial to understand.

Remember that a presentation ORDER BY clause is not allowed in the query defining a table
expression because there’s no order among the rows of a relational table. An attempt to
create an ordered view is absurd because it violates fundamental properties of a relation

as defined by the relational model. If you need to return rows from a view sorted for
presentation purposes, you shouldn't try to make the view something it shouldn't be. Instead,
you should specify a presentation ORDER BY clause in the outer query against the view, like so:

SELECT custid, companyname, region
FROM Sales.USACusts
ORDER BY region;

Try running the following code to create a view with a presentation ORDER BY clause:

ALTER VIEW Sales.USACusts
AS

SELECT
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA'

ORDER BY region;

GO

This attempt fails and you get the following error:

Msg 1033, Level 15, State 1, Procedure USACusts, Line 9
The ORDER BY clause is invalid in views, inline functions, derived tables, subqueries, and
common table expressions, unless TOP or FOR XML 1is also specified.

The error message indicates that SQL Server allows the ORDER BY clause in two exceptional
cases—when the TOP or FOR XML options are used. Neither case follows the SQL standard, and
in both cases the ORDER BY clause serves a purpose beyond the usual presentation purpose.

Because T-SQL allows an ORDER BY clause in a view when TOP is also specified, some people
think that they can create “ordered views” by using TOP (100) PERCENT like so:

ALTER VIEW Sales.USACusts
AS

SELECT TOP (100)
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

Chapter 5 Table Expressions 175

FROM Sales.Customers
WHERE country = N'USA'
ORDER BY region;

GO

Even though the code is technically valid and the view is created, you should be aware
that because the query is used to define a table expression, the ORDER BY clause here is
only guaranteed to serve the logical filtering purpose for the TOP option. If you query the
view and don't specify an ORDER BY clause in the outer query, presentation order is not
guaranteed.

For example, run the following query against the view:

SELECT custid, companyname, region
FROM Sales.USACusts;

Here is the output from one of my executions showing that the rows are not sorted by
region:

custid companyname region
32 Customer YSIQX OR
36 Customer LVISO OR
43 Customer UISOJ] WA
45 Customer QXPPT CA
48 Customer DVFMB OR
55 Customer KZQZT AK
65 Customer NYUHS NM
71 Customer LCOUJ ID
75 Customer X0JYP wy
77 Customer LCYBZ OR
78 Customer NLTYP MT
82 Customer EYHKM WA
89 Customer YBQTI WA

In some cases a query that is used to define a table expression has the TOP option with an
ORDER BY clause, and the query against the table expression doesn’t have an ORDER BY
clause. In those cases, therefore, the output might or might not be returned in the specified
order. If the results happen to be ordered, it may be due to optimization reasons, especially
when you use values other than TOP (100) PERCENT. The point I'm trying to make is that
any order of the rows in the output is considered valid, and no specific order is guaranteed;
therefore, when querying a table expression, you should not assume any order unless you
specify an ORDER BY clause in the outer query.

Do not confuse the behavior of a query that is used to define a table expression with a query
that isn't. A query with TOP and ORDER BY does not guarantee presentation order only in
the context of a table expression. In the context of a query that is not used to define a table
expression, the ORDER BY clause serves both the logical filtering purpose for the TOP option
and the presentation purpose.

176

Microsoft SQL Server 2008 T-SQL Fundamentals
View Options

When you create or alter a view, you can specify view attributes and options as part of the
view definition. In the header of the view under the WITH clause you can specify attributes
such as ENCRYPTION and SCHEMABINDING, and at the end of the query you can specify
WITH CHECK OPTION. The following sections describe the purpose of these options.

The ENCRYPTION Option

The ENCRYPTION option is available when you create or alter views, stored procedures,
triggers, and user-defined functions (UDFs). The ENCRYPTION option indicates that SQL
Server will internally store the text with the definition of the object in an obfuscated format.
The obfuscated text is not directly visible to users through any of the catalog objects—only
to privileged users through special means.

Before you look at the ENCRYPTION option, run the following code to alter the definition of
the USACusts view to its original version:

ALTER VIEW Sales.USACusts
AS

SELECT
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

GO

To get the definition of the view, invoke the OBJECT_DEFINITION function like so:

SELECT OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));

The text with the definition of the view is available because the view was created without the
ENCRYPTION option. You get the following output:

CREATE VIEW Sales.USACusts
AS

SELECT
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

Next, alter the view definition—only this time, include the ENCRYPTION option:

ALTER VIEW Sales.USACusts WITH ENCRYPTION
AS

SELECT
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

Chapter 5 Table Expressions 177

FROM Sales.Customers
WHERE country = N'USA';
GO

Try again to get the text with the definition of the view:

SELECT OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));
This time you get a NULL back.

As an alternative to the OBJECT_DEFINITION function, you can use the sp_helptext stored
procedure to get object definitions. The OBJECT_DEFINITION function was added in SQL Server
2005 while sp_helptext was also available in earlier versions. For example, the following code
requests the object definition of the USACusts view:

EXEC sp_helptext 'Sales.USACusts';

Because in our case the view was created with the ENCRYPTION option, you will not get the
object definition back, but the following message:

The text for object 'Sales.USACusts' is encrypted.

The SCHEMABINDING Option

The SCHEMABINDING option is available to views and UDFs, and it binds the schema of referenced
objects and columns to the schema of the referencing object. It indicates that referenced objects
cannot be dropped and that referenced columns cannot be dropped or altered.

For example, alter the USACusts view with the SCHEMABINDING option:

ALTER VIEW Sales.USACusts WITH SCHEMABINDING
AS

SELECT
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

GO

Now try to drop the Address column from the Customers table:
ALTER TABLE Sales.Customers DROP COLUMN address;

You get the following error:

Msg 5074, Level 16, State 1, Line 1

The object 'USACusts' is dependent on column 'address'.

Msg 4922, Level 16, State 9, Line 1

ALTER TABLE DROP COLUMN address failed because one or more objects access this column.

Without the SCHEMABINDING option, such a schema change would have been allowed, as
well as dropping the Customers table altogether. This can lead to errors at run time when

178

Microsoft SQL Server 2008 T-SQL Fundamentals

you try to query the view, and referenced objects or columns that do not exist. If you create
the view with the SCHEMABINDING option, you can avoid these errors.

The object definition must meet a couple of technical requirements to support the
SCHEMABINDING option. The query is not allowed to use * in the SELECT clause; instead, you
have to explicitly list column names. Also, you must use schema-qualified two-part names
when referring to objects. Both requirements are actually good practices in general.

As you can imagine, creating your objects with the SCHEMABINDING option is a good practice.

The Option CHECK OPTION

The purpose of CHECK OPTION is to prevent modifications through the view that conflict
with the view's filter—assuming that one exists in the query defining the view.

The query defining the view USACusts filters customers where the country attribute is equal

to N'USA' The view is currently defined without CHECK OPTION. This means that you can
currently insert rows through the view with customers from countries other than the United
States, and you can update existing customers through the view, changing their country to one
other than the United States. For example, the following code successfully inserts a customer
with company name Customer ABCDE from the United Kingdom through the view:

INSERT INTO Sales.USACusts(
companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax)
VALUES (
N'Customer ABCDE', N'Contact ABCDE', N'Title ABCDE', N'Address ABCDE',
N'London', NULL, N'12345"', N'UK', N'012-3456789', N'012-3456789');

The row was inserted through the view into the Customers table. However, because the
view filters only customers from the United States, if you query the view looking for the new
customer you get an empty set back:

SELECT custid, companyname, country
FROM Sales.USACusts
WHERE companyname = N'Customer ABCDE';

Query the Customers table directly looking for the new customer:

SELECT custid, companyname, country
FROM Sales.Customers
WHERE companyname = N'Customer ABCDE';

You get the customer information in the output, because the new row made it to the
Customers table:

custid companyname country

Chapter 5 Table Expressions 179

Similarly, if you update a customer row through the view, changing the country attribute to
a country other than the United States, the update makes it to the table. But that customer
doesn’t show up anymore in the view because it doesn't qualify to the view's query filter.

If you want to prevent modifications that conflict with the view's filter, add WITH CHECK
OPTION at the end of the query defining the view:

ALTER VIEW Sales.USACusts WITH SCHEMABINDING
AS

SELECT
custid, companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA'

WITH CHECK OPTION;

GO

Now try to insert a row that conflicts with the view's filter:

INSERT INTO Sales.USACusts(
companyname, contactname, contacttitle, address,
city, region, postalcode, country, phone, fax)
VALUES (
N'Customer FGHIJ', N'Contact FGHIJ', N'Title FGHIJ', N'Address FGHIJ]',
N'London', NULL, N'12345', N'UK', N'012-3456789', N'012-3456789');

You get the following error:

Msg 550, Level 16, State 1, Line 1

The attempted insert or update failed because the target view either specifies WITH CHECK
OPTION or spans a view that specifies WITH CHECK OPTION and one or more rows resulting from
the operation did not qualify under the CHECK OPTION constraint.

The statement has been terminated.

When you're done, run the following code for cleanup:

DELETE FROM Sales.Customers
WHERE custid > 91;

DBCC CHECKIDENT('Sales.Customers', RESEED, 91);

IF OBJECT_ID('Sales.USACusts') IS NOT NULL DROP VIEW Sales.USACusts;

Inline Table-Valued Functions

Inline TVFs are reusable table expressions that support input parameters. In all respects
except for the support for input parameters, inline TVFs are similar to views. For this
reason, | like to think of inline TVFs as parameterized views, even though they are not
called this formally.

180

Microsoft SQL Server 2008 T-SQL Fundamentals

For example, the following code creates an inline TVF called fn_GetCustOrders in the
TSQLFundamentals2008 database:

USE TSQLFundamentals2008;
IF OBJECT_ID('dbo.fn_GetCustOrders') IS NOT NULL
DROP FUNCTION dbo.fn_GetCustOrders;
GO
CREATE FUNCTION dbo.fn_GetCustOrders
(@cid AS INT) RETURNS TABLE
AS
RETURN
SELECT orderid, custid, empid, orderdate, requireddate,
shippeddate, shipperid, freight, shipname, shipaddress, shipcity,
shipregion, shippostalcode, shipcountry
FROM Sales.Orders
WHERE custid = @cid;
GO

This inline TVF accepts an input parameter called @cid representing a customer ID, and re-
turns all orders that were placed by the input customer. You query inline TVFs like you query
other tables with DML statements. If the function accepts input parameters, you specify
those in parentheses following the function’s name. Also, make sure you provide an alias to
the table expression. Providing a table expression with an alias is not always a requirement
but is a good practice because it makes your code more readable and less prone to errors.
For example, the following code queries the function requesting all orders that were placed
by customer 1:

SELECT orderid, custid
FROM dbo.fn_GetCustOrders(1) AS CO;

This code returns the following output:

orderid custid

As with other tables, you can refer to an inline TVF as part of a join. For example, the follow-
ing query joins the inline TVF returning customer 1's orders with the Sales.OrderDetails table,
matching customer 1's orders with the related order lines:

SELECT CO.orderid, CO.custid, OD.productid, OD.qty
FROM dbo.fn_GetCustOrders(1) AS CO
JOIN Sales.OrderDetails AS OD
ON CO.orderid = OD.orderid;

Chapter 5 Table Expressions 181

This code returns the following output:

orderid custid productid qty
10643 1 28 15
10643 1 39 21
10643 1 46 2
10692 1 63 20
10702 1 3 6
10702 1 76 15
10835 1 59 15
10835 1 77 2
10952 1 6 16
10952 1 28 2
11011 1 58 40
11011 1 71 20

When you're done, run the following code for cleanup:

IF OBJECT_ID('dbo.fn_GetCustOrders') IS NOT NULL
DROP FUNCTION dbo.fn_GetCustOrders;

The APPLY Operator

The APPLY operator is a nonstandard table operator that was introduced in SQL Server 2005.
This operator is used in the FROM clause of a query like all table operators. The two supported
types of the APPLY operator are CROSS APPLY and OUTER APPLY. CROSS APPLY implements
only one logical query processing phase, while OUTER APPLY implements two.

The APPLY operator operates on two input tables, the second of which may be a table
expression; I'll refer to them as the left and right tables. The right table is usually a derived
table or an inline TVF. The CROSS APPLY operator implements one logical query processing
phase—it applies the right table expression to each row from the left table, and produces a
result table with the unified result sets.

So far it might sound like the CROSS APPLY operator is very similar to a cross join, and in a
sense that's true. For example, the following two queries return the same result sets:

SELECT S.shipperid, E.empid
FROM Sales.Shippers AS S
CROSS JOIN HR.Employees AS E;

SELECT S.shipperid, E.empid
FROM Sales.Shippers AS S
CROSS APPLY HR.EmpTloyees AS E;

However, with the CROSS APPLY operator the right table expression can represent a different

set of rows per each row from the left table, unlike in a join. You can achieve this when you use a
derived table in the right side, and in the derived table query refer to attributes from the left side.
Or when you use an inline TVF, you can pass attributes from the left side as input arguments.

182

Microsoft SQL Server 2008 T-SQL Fundamentals

For example, the following code uses the CROSS APPLY operator to return the three most
recent orders for each customer:

SELECT C.custid, A.orderid, A.orderdate
FROM Sales.Customers AS C
CROSS APPLY
(SELECT TOP(3) orderid, empid, orderdate, requireddate
FROM Sales.Orders AS O
WHERE O.custid = C.custid
ORDER BY orderdate DESC, orderid DESC) AS A;

You can think of the table expression A as a correlated table subquery. In terms of logical
query processing, the right table expression (derived table in our case) is applied to each row
from the Customers table. Notice the reference to the attribute C.custid from the left table in
the derived table's query filter. The derived table returns the three most recent orders for the
customer from the current left row. Because the derived table is applied to each row from the
left side, the CROSS APPLY operator returns the three most recent orders for each customer.

Here's the output of this query, shown here in abbreviated form:

custid orderid orderdate

1 11011 2008-04-09 00:00:00.000
1 10952 2008-03-16 00:00:00.000
1 10835 2008-01-15 00:00:00.000
2 10926 2008-03-04 00:00:00.000
2 10759 2007-11-28 00:00:00.000
2 10625 2007-08-08 00:00:00.000
3 10856 2008-01-28 00:00:00.000
3 10682 2007-09-25 00:00:00.000
3 10677 2007-09-22 00:00:00.000

(263 row(s) affected)

If the right table expression returns an empty set, the CROSS APPLY operator does not return
the corresponding left row. For example, customers 22 and 57 did not place orders. In both
cases the derived table is an empty set; therefore, those customers are not returned in the
output. If you want to return rows from the left table for which the right table expression
returns an empty set, use the OUTER APPLY operator instead of CROSS APPLY. The OUTER
APPLY operator adds a second logical phase that identifies rows from the left side for which
the right table expression returns an empty set, and adds those rows to the result table as
outer rows with NULLs in the right side’s attributes as place holders. In a sense, this phase is
similar to the phase that adds outer rows in a left outer join.

For example, run the following code to return the three most recent orders for each customer,
and include in the output customers with no orders as well:

SELECT C.custid, A.orderid, A.orderdate
FROM Sales.Customers AS C
OUTER APPLY

Chapter 5 Table Expressions 183

(SELECT TOP(3) orderid, empid, orderdate, requireddate
FROM Sales.Orders AS O

WHERE O.custid = C.custid

ORDER BY orderdate DESC, orderid DESC) AS A;

This time, customers 22 and 57, who did not place orders, are included in the output, which is
shown here in abbreviated form:

custid orderid orderdate

1 11011 2008-04-09 00:00:00.000
1 10952 2008-03-16 00:00:00.000
1 10835 2008-01-15 00:00:00.000
2 10926 2008-03-04 00:00:00.000
2 10759 2007-11-28 00:00:00.000
2 10625 2007-08-08 00:00:00.000
3 10856 2008-01-28 00:00:00.000
3 10682 2007-09-25 00:00:00.000
3 10677 2007-09-22 00:00:00.000
22 NULL NULL

57 NULL NULL

(265 row(s) affected)

For encapsulation purposes you may find it more convenient to work with inline TVFs instead
of derived tables. This way your code will be simpler to follow and maintain. For example, the
following code creates an inline TVF called fn_TopOrders that accepts as inputs a customer ID
(@custid) and a number (@n), and returns the @n most recent orders for customer @custid-

IF OBJECT_ID('dbo.fn_TopOrders') IS NOT NULL
DROP FUNCTION dbo.fn_TopOrders;
GO
CREATE FUNCTION dbo.fn_TopOrders
(@custid AS INT, @n AS INT)
RETURNS TABLE
AS
RETURN
SELECT TOP(@n) orderid, empid, orderdate, requireddate
FROM Sales.Orders
WHERE custid = @custid
ORDER BY orderdate DESC, orderid DESC;
GO

You can now substitute the use of the derived table from the previous examples with the new
function:

SELECT

C.custid, C.companyname,

A.orderid, A.empid, A.orderdate, A.requireddate
FROM Sales.Customers AS C

CROSS APPLY dbo.fn_TopOrders(C.custid, 3) AS A;

184 Microsoft SQL Server 2008 T-SQL Fundamentals

The code is much more readable and easier to maintain. In terms of physical processing,
nothing really changed because, as | stated earlier, the definition of table expressions is
expanded, and SQL Server will in any case end up querying the underlying objects directly.

Conclusion

Table expressions can help you simplify your code, improve its maintainability, and encapsulate
querying logic. When you need to use table expressions and are not planning to reuse their
definitions, use derived tables or CTEs. CTEs have a couple of advantages over derived tables;
you do not nest CTEs as you do derived tables, making CTEs more modular and easier to
maintain. Also, you can refer to multiple instances of the same CTE, which you cannot do with
derived tables.

When you need to define reusable table expressions, use views or inline TVFs. When you do
not need to support input parameters, use views; otherwise, use inline TVFs.

Use the APPLY operator when you want to apply a table expression to each row from a
source table, and unify all result sets into one result table.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in
this chapter. All the exercises in this chapter require your session to be connected to the data-
base TSQLFundamentals2008.

1-1

Write a query that returns the maximum order date for each employee.
Tables involved: TSQLFundamentals2008 database, Sales.Orders table.
Desired output:

empid maxorderdate

2008-04-30 00:00:00.000
2008-04-23 00:00:00.000
2008-04-29 00:00:00.000
2008-05-06 00:00:00.000
2008-05-06 00:00:00.000
2008-05-06 00:00:00.000
2008-05-05 00:00:00.000
2008-04-22 00:00:00.000
2008-05-06 00:00:00.000

UV N DA EFENOOW

(9 row(s) affected)

Chapter 5 Table Expressions 185

Encapsulate the query from Exercise 1-1 in a derived table. Write a join query between the
derived table and the Orders table to return the orders with the maximum order date for
each employee.

Tables involved: Sales.Orders.

Desired output:

empid orderdate orderid custid
9 2008-04-29 00:00:00.000 11058 6
8 2008-05-06 00:00:00.000 11075 68
7 2008-05-06 00:00:00.000 11074 73
6 2008-04-23 00:00:00.000 11045 10
5 2008-04-22 00:00:00.000 11043 74
4 2008-05-06 00:00:00.000 11076 9
3 2008-04-30 00:00:00.000 11063 37
2 2008-05-05 00:00:00.000 11073 58
2 2008-05-05 00:00:00.000 11070 44
1 2008-05-06 00:00:00.000 11077 65

(10 row(s) affected)

2-1

Write a query that calculates a row number for each order based on orderdate, orderid
ordering.

Tables involved: Sales.Orders.

Desired output (abbreviated):

orderid orderdate custid empid rownum
10248 2006-07-04 00:00:00.000 85 5 1
10249 2006-07-05 00:00:00.000 79 6 2
10250 2006-07-08 00:00:00.000 34 4 3
10251 2006-07-08 00:00:00.000 84 3 4
10252 2006-07-09 00:00:00.000 76 4 5
10253 2006-07-10 00:00:00.000 34 3 6
10254 2006-07-11 00:00:00.000 14 5 7
10255 2006-07-12 00:00:00.000 68 9 8
10256 2006-07-15 00:00:00.000 88 3 9
10257 2006-07-16 00:00:00.000 35 4 10

(830 row(s) affected)

186 Microsoft SQL Server 2008 T-SQL Fundamentals

Write a query that returns rows with row numbers 11 through 20 based on the row number
definition in Exercise 2-1. Use a CTE to encapsulate the code from Exercise 2-1.

Tables involved: Sales.Orders.

Desired output:

orderid orderdate custid empid rownum
10258 2006-07-17 00:00:00.000 20 1 11
10259 2006-07-18 00:00:00.000 13 4 12
10260 2006-07-19 00:00:00.000 56 4 13
10261 2006-07-19 00:00:00.000 61 4 14
10262 2006-07-22 00:00:00.000 65 8 15
10263 2006-07-23 00:00:00.000 20 9 16
10264 2006-07-24 00:00:00.000 24 6 17
10265 2006-07-25 00:00:00.000 7 2 18
10266 2006-07-26 00:00:00.000 87 3 19
10267 2006-07-29 00:00:00.000 25 4 20

(10 row(s) affected)

3

Write a solution using a recursive CTE that returns the management chain leading to Zoya
Dolgopyatova (employee ID 9).

Tables involved: HR.Employees.

Desired output:

empid mgrid firstname Tastname

9 5 Zoya Dolgopyatova
5 2 Sven Buck

2 1 Don Funk

1 NULL Sara Davis

(4 row(s) affected)

4-1
Create a view that returns the total quantity for each employee and year.
Tables involved: Sales.Orders and Sales.OrderDetails.

When running the following code:

SELECT * FROM Sales.VEmpOrders ORDER BY empid, orderyear;

Chapter 5 Table Expressions 187

The desired output is:

empid orderyear qty
1 2006 1620
1 2007 3877
1 2008 2315
2 2006 1085
2 2007 2604
2 2008 2366
3 2006 940
3 2007 4436
3 2008 2476
4 2006 2212
4 2007 5273
4 2008 2313
5 2006 778
5 2007 1471
5 2008 787
6 2006 963
6 2007 1738
6 2008 826
7 2006 485
7 2007 2292
7 2008 1877
8 2006 923
8 2007 2843
8 2008 2147
9 2006 575
9 2007 955
9 2008 1140

(27 row(s) affected)

4-2 (Optional, Advanced)

Write a query against Sales VEmpOrders that returns the running total quantity for each
employee and year.

Tables involved: Sales.VEmpOrders view.
Desired output:

empid orderyear qty runqty
1 2006 1620 1620
1 2007 3877 5497
1 2008 2315 7812
2 2006 1085 1085
2 2007 2604 3689
2 2008 2366 6055
3 2006 940 940

188 Microsoft SQL Server 2008 T-SQL Fundamentals

3 2007 4436 5376
3 2008 2476 7852
4 2006 2212 2212
4 2007 5273 7485
4 2008 2313 9798
5 2006 778 778

5 2007 1471 2249
5 2008 787 3036
6 2006 963 963

6 2007 1738 2701
6 2008 826 3527
7 2006 485 485

7 2007 2292 2777
7 2008 1877 4654
8 2006 923 923

8 2007 2843 3766
8 2008 2147 5913
9 2006 575 575

9 2007 955 1530
9 2008 1140 2670

(27 row(s) affected)

5-1

Create an inline function that accepts as inputs a supplier ID (@supid AS INT) and a requested
number of products (@n AS INT). The function should return @n products with the highest
unit prices that are supplied by the given supplier ID.

Tables involved: Production.Products.
When issuing the following query:
SELECT * FROM Production.fn_TopProducts(5, 2);

Desired output:

productid productname unitprice
12 Product OSFNS 38.00
11 Product QMVUN 21.00

(2 row(s) affected)

5-2

Using the CROSS APPLY operator and the function you created in Exercise 4-1, return, for
each supplier, the two most expensive products.

Chapter 5 Table Expressions 189

Desired output:

supplierid companyname productid productname unitprice
8 SuppTlier BWGYE 20 Product QHFFP 81.00
8 Supplier BWGYE 68 Product TBTBL 12.50
20 Supplier CIYNM 43 Product ZZZHR 46.00
20 Supplier CIYNM 44 Product VJIEO 19.45
23 Supplier ELCRN 49 Product FPYPN 20.00
23 Supplier ELCRN 76 Product JYGFE 18.00
5 Supplier EQPNC 12 Product OSFNS 38.00
5 Supplier EQPNC 11 Product QMVUN 21.00

(55 row(s) affected)

Solutions

This section provides solutions to the exercises in the preceding section.

1-1

This exercise is just a preliminary step to the next exercise. This step involves writing a query
that returns the maximum order date for each employee:

USE TSQLFundamentals2008;

SELECT empid, MAX(orderdate) AS maxorderdate
FROM Sales.Orders
GROUP BY empid;

1-2

This exercise requires you to use the query from the previous step to define a derived table,
and join this derived table with the Orders table to return the orders with the maximum
order date for each employee, like so:

SELECT O.empid, O.orderdate, O.orderid, O.custid
FROM Sales.Orders AS O
JOIN (SELECT empid, MAX(orderdate) AS maxorderdate
FROM Sales.Orders
GROUP BY empid) AS D
ON O.empid = D.empid
AND O.orderdate = D.maxorderdate;

190

Microsoft SQL Server 2008 T-SQL Fundamentals

This exercise is a preliminary step to the next exercise. It requires you to query the Orders
table and calculate row numbers based on orderdate, orderid ordering, like so:

SELECT orderid, orderdate, custid, empid,
ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum
FROM Sales.Orders;

2-2

This exercise requires you to define a CTE based on the query from the previous step, and
filter only rows with row numbers in the range 11 through 20 from the CTE, like so:

WITH OrdersRN AS

(
SELECT orderid, orderdate, custid, empid,
ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum
FROM Sales.Orders

D)
SELECT * FROM OrdersRN WHERE rownum BETWEEN 11 AND 20;

You might wonder why you need a table expression here. Remember that calculations based
on the OVER clause (such as the ROW_NUMBER function) are only allowed in the SELECT
and ORDER BY clauses of a query, and not directly in the WHERE clause. By using a table
expression you can invoke the ROW_NUMBER function in the SELECT clause, assign an alias
to the result column, and refer to the result column in the WHERE clause of the outer query.

3

You can think of this exercise as the inverse of the request to return an employee and all
subordinates in all levels. Here, the anchor member is a query that returns the row for
employee 9. The recursive member joins the CTE (call it C)—representing the subordinate/
child from the previous level—with the Employees table (call it P)—representing the
manager/parent in the next level. This way, each invocation of the recursive member
returns the manager from the next level, until no next level manager is found (in the case
of the CEOQ).

Here's the complete solution query:

WITH EmpsCTE AS

(
SELECT empid, mgrid, firstname, lastname
FROM HR.Employees
WHERE empid = 9

UNION ALL

Chapter 5 Table Expressions 191

SELECT P.empid, P.mgrid, P.firstname, P.Tastname
FROM EmpsCTE AS C
JOIN HR.Employees AS P
ON C.mgrid = P.empid
)
SELECT empid, mgrid, firstname, lastname
FROM EmpsCTE;

4-1

This exercise is a preliminary step to the next exercise. Here you are required to define a view based
on a query that joins the Orders and OrderDetails tables, group the rows by employee ID and
order year, and return the total quantity for each group. The view definition should look like this:

USE TSQLFundamentals2008;

IF OBJECT_ID('Sales.VEmpOrders') IS NOT NULL
DROP VIEW Sales.VEmpOrders;

GO

CREATE VIEW Sales.VEmpOrders

AS

SELECT
empid,
YEAR(orderdate) AS orderyear,
SUM(qty) AS qty
FROM Sales.Orders AS O
JOIN Sales.OrderDetails AS OD
ON O.orderid = OD.orderid
GROUP BY
empid,
YEAR(orderdate);
GO

4-2

In this exercise, you query the VEmpOrders view and return the running total quan-

tity for each employee and order year. To achieve this, you can write a query against the
VEmpOrders view (call it V1) that returns from each row the employee ID, order year, and
quantity. In the SELECT list you can incorporate a subquery against a second instance of
VEmpOrders (call it V2), that returns the sum of all quantities from the rows where the
employee ID is equal to the one in V1, and the order year is smaller than or equal to the one
in V1. The complete solution query looks like this:

SELECT empid, orderyear, qty,
(SELECT SUM(qty)
FROM Sales.VEmpOrders AS V2
WHERE V2.empid = V1.empid
AND V2.orderyear <= Vl1.orderyear) AS runqty
FROM Sales.VEmpOrders AS V1
ORDER BY empid, orderyear;

192

Microsoft SQL Server 2008 T-SQL Fundamentals

This exercise requires you to define a function called fn_TopProducts that accepts a supplier
ID (@supid) and a number (@n), and is supposed to return the @n most expensive products
supplied by the input supplier ID. Here's how the function definition should look:

USE TSQLFundamentals2008;
IF OBJECT_ID('Production.fn_TopProducts') IS NOT NULL
DROP FUNCTION Production.fn_TopProducts;
GO
CREATE FUNCTION Production.fn_TopProducts
(@supid AS INT, @n AS INT)
RETURNS TABLE
AS
RETURN
SELECT TOP(@n) productid, productname, unitprice
FROM Production.Products
WHERE supplierid = @supid
ORDER BY unitprice DESC;
GO

5-2

In this exercise, you write a query against the Production.Suppliers table, and use the CROSS
APPLY operator to apply the function you defined by the previous step to each supplier. Your
query is supposed to return the two most expensive products for each supplier. Here's the
solution query:

SELECT S.supplierid, S.companyname, P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S
CROSS APPLY Production.fn_TopProducts(S.supplierid, 2) AS P;

	Cover
	Table of Contents
	Chapter 5: Table Expressions
	Derived Tables
	Assigning Column Aliases
	Using Arguments
	Nesting
	Multiple References

	Common Table Expressions
	Assigning Column Aliases
	Using Arguments
	Defining Multiple CTEs
	Multiple References
	Recursive CTEs

	Views
	Views and the ORDER BY Clause
	View Options

	Inline Table-Valued Functions
	The APPLY Operator
	Conclusion
	Exercises
	Solutions

